| 变量名 | 含义 | 值 |
|---|---|---|
time_start |
开始时间 | 2026-01-18 12:01:42 |
platform |
平台 | Linux-5.10.134-18.0.6.lifsea8.x86_64-x86_64-with-glibc2.35 |
processor |
CPU架构 | x86_64 |
python_version |
Python版本 | 3.10.6 |
torch_version |
Torch版本 | 2.0.0+cu118 |
cuda_available |
CUDA可用 | False |
cuda_device_count |
GPU数量 | 0 |
cuda_device_name_0 |
GPU0名称 | NA |
device_used |
使用设备 | cpu |
epochs |
训练轮数 | 30 |
train_seconds |
训练时长 | 49分钟16秒 |
threshold_default |
默认阈值 | 0.5 |
pos_weight_used |
pos_weight | 30.0 |
lr_init |
初始学习率 | 1e-3 |
optimizer |
优化器 | Adam |
report_folder_name |
报告名 | 01181251_e30_w30 |
| 变量名 | 含义 | 值 |
|---|---|---|
time |
记录时间 | 2026-01-18 12:53:09 |
platform |
平台 | Linux-5.10.134-18.0.6.lifsea8.x86_64-x86_64-with-glibc2.35 |
processor |
CPU架构 | x86_64 |
python_version |
Python版本 | 3.10.6 |
torch_version |
Torch版本 | 2.0.0+cu118 |
cuda_available |
CUDA可用 | False |
device_used |
使用设备 | cpu |
threshold_default |
默认阈值 | 0.5 |
batch_size |
batch_size | 64 |
report_folder_name |
报告名 | 01181251_e30_w30 |
pos_pred_ratelr(若无则为空)pos_pred_rate 判断“乱报切点”程度,再看 PRF 是否平衡,最后结合 AP/AUC 评估整体质量。
| 阈值 | 0.5 |
| 精确率 | 0.08888888888888889 |
| 召回率 | 0.8888888888888888 |
| F1 | 0.1616161616161616 |
| 准确率 | 0.8163716814159292 |
| AP(PR-AUC) | 0.635875995704627 |
| AUC(ROC) | 0.9596814647604716 |
| TP | 16 |
| FP | 164 |
| TN | 722 |
| FN | 2 |
| 正类预测率 | 0.1991150442477876 |
| 阈值 | 0.5 |
| 精确率 | 0.1231884057971015 |
| 召回率 | 0.85 |
| F1 | 0.2151898734177215 |
| 准确率 | 0.9084870848708487 |
| AP(PR-AUC) | 0.6422196488827667 |
| AUC(ROC) | 0.9334082397003746 |
| TP | 17 |
| FP | 121 |
| TN | 1214 |
| FN | 3 |
| 正类预测率 | 0.1018450184501845 |
dataset_summary(显示前 11 行 / 共 11 行)| item | value |
|---|---|
| num_videos | 5 |
| num_pairs | 1355 |
| num_cuts | 20 |
| num_non_cuts | 1335 |
| pos_ratio | 0.01476014760147601 |
| per_video_frame_stats | |
| min_frames | 43 |
| max_frames | 700 |
| mean_frames | 272 |
| median_frames | 161 |
per_video(显示前 5 行 / 共 5 行)| vid | vid_idx | total_frames | gt_cut_count | pred_cut_count | tp | fp | fn | gt_cuts | pred_cuts |
|---|---|---|---|---|---|---|---|---|---|
| V001.mp4 | 0 | 43 | 1 | 11 | 1 | 10 | 0 | 26 | 7,17,18,19,20,21,22,23,24,25,26 |
| V002.mp4 | 1 | 161 | 2 | 4 | 1 | 3 | 1 | 86,131 | 25,86,96,140 |
| V003.mp4 | 2 | 122 | 5 | 21 | 5 | 16 | 0 | 18,35,56,72,105 | 18,21,25,35,40,42,43,44,47,48,49,51,52,53,54,55,56,58,61,72,105 |
| V004.mp4 | 3 | 700 | 6 | 4 | 4 | 0 | 2 | 46,419,457,504,600,643 | 46,419,457,643 |
| V005.mp4 | 4 | 334 | 6 | 98 | 6 | 92 | 0 | 20,69,134,169,238,263 | 11,12,13,14,15,16,17,18,19,20,31,32,33,35,36,45,46,47,54,55,57,58,59,60,61,62,69,78,79,80,95,97,99,100,112,113,114,122,123,124,128,129,130,131,132,133,134,136,137,138,156,169,171,173,174,176,178,179,183,184,189,191,196,198,199,201,203,221,224,226,228,238,263,265,266,267,269,271,272,274,275,276,277,280,281,282,284,285,286,287,289,290,291,292,324,325,329,330 |
classification_report(显示前 5 行 / 共 5 行)| text |
|---|
| precision recall f1-score support |
| Non-cut 0.9975 0.9094 0.9514 1335 |
| Cut 0.1232 0.8500 0.2152 20 |
| accuracy 0.9085 1355 |